Entropy-Weighted Instance Matching Between Different Sourcing Points of Interest
نویسندگان
چکیده
منابع مشابه
Entropy-Weighted Instance Matching Between Different Sourcing Points of Interest
The crucial problem for integrating geospatial data is finding the corresponding objects (the counterpart) from different sources. Most current studies focus on object matching with individual attributes such as spatial, name, or other attributes, which avoids the difficulty of integrating those attributes, but at the cost of an ineffective matching. In this study, we propose an approach for ma...
متن کاملA Robust Interest Points Matching Algorithm
This paper presents an algorithm that matches interest points detected on a pair of grey level images taken from arbitrary points of view. First matching hypotheses are generated using a similarity measure of the interest points. Hypotheses are confirmed using local groups of interest points: group matches are based on a measure defined on an affine transformation estimate and on a correlation ...
متن کاملA Weighted Multi-Attribute Method for Matching User-Generated Points of Interest
To a large degree, the attraction of Big Data lies in the variety of its heterogeneous multi-thematic and multidimensional data sources and not merely its volume. To fully exploit this variety, however, requires conflation. This is a two step process. First, one has to establish identity relations between information entities across the different data sources; and second, attribute values have ...
متن کاملUsing Top-Points as Interest Points for Image Matching
We consider the use of so-called top-points for object retrieval. These points are based on scale-space and catastrophe theory, and are invariant under gray value scaling and offset as well as scale-Euclidean transformations. The differential properties and noise characteristics of these points are mathematically well understood. It is possible to retrieve the exact location of a top-point from...
متن کاملTop-Points as Interest Points for Image Matching
We consider the use of top-points for object retrieval. These points are based on scale-space and catastrophe theory, and are invariant under gray value scaling and offset as well as scale-Euclidean transformations. The differential properties and noise characteristics of these points are mathematically well understood. It is possible to retrieve the exact location of a top-point from any coars...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Entropy
سال: 2016
ISSN: 1099-4300
DOI: 10.3390/e18020045